煙臺機器視覺解決方案—合作咨詢:0535-2163369 13695448998 胡經理
------------------------------------------------------
歡迎電話咨詢獲取機器視覺解決方案,并有機器視覺專家指導開展機器視覺系統導入工作
------------------------------------------------------
仿人機器人的頭部視覺跟蹤系統利用視覺信息作為反饋,來規劃機器人的頭部運動使其能實時的跟蹤運動目標。視覺跟蹤是仿人機器人的重要功能之一,它的研究對于仿人機器人的自主導航、人機交互以及視覺伺服都具有極其重要的意義。
1系統結構
仿人機器人BHR1的系統結構如圖1所示,其全身有32個自由度,其中頭部有2個自由度,可以在兩個方向上自由轉動,即左右轉動和上下轉動。面部放置兩只CCD攝像頭作為視覺傳感器來模擬人的眼睛。采用SVS立體視覺處理系統處理視覺信息,SVS系統提供了每幀圖像的深度圖像。
兩臺計算機置于機器人的胸腔內,其中一臺計算機負責視覺信息的處理,另外一臺負責機器人的運動控制。前者被稱之為信息處理子系統,后者被稱為運動控制子系統,兩臺計算機通過Memolink進行通訊。信息處理子系統利用Windows強大的多媒體功能來處理立體視覺信息,實現目標的快速分割以及物體的運動估計和預測。運動控制子系統以Linux/RT-Linux實時操作系統作為平臺,保證了機器人控制系統的實時性。除了頭部運動關節,運動控制系統負責仿人機器人全部關節的控制。Memolink是系統間進行快速通信的一種有效解決方案,是連接信息處理子系統和運動控制子系統的橋梁。具有通信速度快和通信前無需握手的優點。
整個跟蹤過程執行如下的循環:搜索目標——發現目標——匹配——狀態估計和預測——運動控制。不同的匹配方法應用產生了不同的跟蹤方法。本文中作者提出了一種融合深度、顏色和形狀信息的逐步逼近目標區域的快速分割方法。在實時的跟蹤系統中,運動估計和預測有效的減少了檢測區域,提高了系統的跟蹤速度。研究中采用經典的卡爾曼濾波器進行運動目標的狀態估計和預測。
2基于多圖像信息的目標分割方法
視覺信息處理子系統完成目標物體的快速分割,同時估計和預測目標物體的運動信息,把目標物體的位置信息實時地傳遞給運動控制子系統。目標識別的穩定性對整個跟蹤系統的穩定性起著至關重要的作用。
在復雜背景的非結構化的室內環境下,用于機器人視覺跟蹤的圖像信息有:深度、顏色、形狀、邊緣、運動等。基于多信息的運動目標的分割方法中,所選取的信息應該具有互補性。物體的顏色是物體最顯著的特征,適合用于目標的跟蹤。但是當背景中包含同樣顏色的物體時,基于顏色的跟蹤將會失敗。深度信息有助于系統得到粗略的前景區域,也就是包含運動物體的目標候選窗口,另外基于深度分割的粗略前景輪廓的獲得計算量小,速度快。基于RHT(Random Hough transform)算法的形狀檢測器可以檢測各種不同的幾何形狀,比如:橢圓形、三角形和多邊形,進而把目標候選區域中相同顏色的物體區別開來。
利用仿人機器人的立體視覺系統,設計了融合深度,顏色,形狀信息的逐步逼近目標區域的快速跟蹤方法。圖2為視頻序列中運動目標的分割過程。首先利用深度信息把機器人關心的前景區域分割出來,得到ROF(Region of Foregroud)區域,即粗略的目標候選區域。在ROF中使用顏色濾波器分割,得到ROIC(Region of Interest Color)區域。最后形狀檢測器可以把相同顏色的物體區別開來。在分割過程中,候選目標區域逐步縮小并逼近目標區域。逐步縮小的候選目標區域減少了計算量,提高了系統的運算速度。同時,該方法有效的避免了場景中相同顏色物體的干擾,提高了目標分割的穩定性。
------------------------------------------------------
歡迎電話咨詢獲取機器視覺解決方案,并有機器視覺專家指導開展機器視覺系統導入工作
------------------------------------------------------
煙臺機器視覺解決方案—合作咨詢:0535-2163369 13695448998 胡經理
責任編輯:胡金鵬